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Through the use of analytical and numerical techniques, we investigate the interaction between the trivial
off-state and the continuous-wave �CW� operation of a semiconductor laser subject to conventional optical
feedback. More specifically, using numerical continuation tools, the stability and bifurcations of the CW states,
or external-cavity modes �ECMs�, are analyzed in dependence on the parameters of feedback phase, feedback
strength, pump current, and the linewidth enhancement factor. In this way, curves of codimension-one Hopf
bifurcations are shown to destabilize the off-state and lead to stable ECM operation. Moreover, self-
intersections of these Hopf curves in codimension-two Hopf-Hopf bifurcation points are seen to give rise to
curves of codimension-one torus bifurcations �Hopf bifurcations of the ECMs�, and degenerate-Hopf points to
the birth of saddle-node bifurcations of the ECMs, as parameters are varied. These codimension-two points are
shown to come together at a codimension-three degenerate Hopf-Hopf point �a Bogdanov-Takens bifurcation
of the ECMs�: a limiting point for which a stable off-state can exist.
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I. INTRODUCTION

In the past decade, great progress has been made in un-
derstanding the nonlinear dynamics of semiconductor lasers
subject to external influences �1,2�. A large part of this un-
derstanding has been made possible through the use of nu-
merical continuation software: tools which allow one to find
and follow solutions of governing rate equations, irrespective
of their stability. Moreover, by detecting and following
changes in the stability of solutions, the bifurcations, con-
tinuation tools can be used to trace regions of different dy-
namical behavior in parameters. For example, a complete
survey of the stability and bifurcations of the governing rate
equations has been completed for semiconductor lasers sub-
ject to optical injection �3�. In particular, excellent theoretical
agreement with experimental results has been achieved in
terms of both the stability and of the bifurcations �4�: mod-
eled by ordinary differential equations �ODEs�, the bifurca-
tions of the injection laser were mapped out using the con-
tinuation package AUTO �5�. A second form of external
influence is that of delayed optical feedback, in which light
leaving the laser is reflected back into it after a fixed time
�6�. Uncontrolled optical feedback, for example, from an op-
tical set-up component, may destabilize the continuous-wave
�CW� operation of the laser �7�. However, controlled optical
feedback has been shown to be beneficial in reducing the
linewidth of the laser �8�; as a high-frequency optical signal
generator �9�; and, more recently, as a chaotic signal genera-
tor for use in chaos communication schemes �10,11�.

From a practical point of view, it is crucially important to
understand the structure of the bifurcations which organize
the different dynamical regimes of semiconductor lasers sub-
ject to external influences. In many applications that require
CW output of the laser, such as for use in optical disk drives,
laser spectroscopy or dentistry, the laser must operate in such
a regime that any external influence, for example, back re-
flections from system components, do not destabilize the CW
output or cause the laser to switch to coexisting CW states of

different frequencies. In other words, knowledge of the
closeness to instability, that is, to destabilizing bifurcations,
of a desired CW state and the uniqueness of that particular
solution is required. Conversely, one may want the laser to
operate in a more complex nonlinear dynamical regime, such
as for use in the aforementioned chaos communication
schemes �10,11�. Here, one uses a controlled external influ-
ence to generate chaotic output of the laser light, which can
then be used as a carrier wave on which to transmit confi-
dential information; however, one must ensure that this cha-
otic regime is robust enough. That is to say, one must be
operating in a parameter range so that small perturbations to
the system do not cause a jump to a region of CW operation
for which, if intercepted, the confidential information can be
easily decrypted from the transmitted signal. A second non-
linear regime of interest may be that in which one finds a
coexistence between a number of CW states. Such multi-
stable operation could be exploited for use in, for example,
optical flip-flop schemes �12�. For all of these areas of appli-
cation, from the need for stable CW output, through to the
want of a robust, more complex nonlinear dynamic, a de-
tailed bifurcation analysis is of advantage in identifying the
parameter ranges in which the laser must be operated in or-
der to guarantee successful operation. Finally, from a design
perspective, a detailed theoretical knowledge of the different
dynamical regimes, and the bifurcations bounding these re-
gimes, may be compared to experimental results in order to
determine the values of hard to measure material properties
of a given manufactured laser, such as the linewidth en-
hancement factor �13�.

In the early 1980s, Lang and Kobayashi �14� proposed to
model semiconductor lasers subject to conventional optical
feedback �COF� using delay differential equations �DDEs�.
In order to solve DDEs, one must specify an initial history
function: a “point” in an infinite-dimensional space of con-
tinuous functions �15�. The good news is that while DDEs
have this infinite-dimensional phase space, their solutions
have a discrete spectra and, therefore, the bifurcation theory
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for ODEs can be applied �16,17�. It was not until relatively
recently, however, that continuation tools for DDEs became
available. The introduction of DDE-BIFTOOL �18� �a continu-
ation package for the bifurcation analysis of DDEs� estab-
lished a new era in the understanding of the bifurcations of
semiconductor lasers subject to optical feedback. The COF
laser was a driving force in the early development of DDE-

BIFTOOL �19,20�, however, the majority of bifurcation analy-
ses of feedback lasers have been performed on Lang-
Kobayashi-type rate equations describing more complicated
feedback mechanisms, namely: phase-conjugate optical feed-
back �PCF� �21,22�, filtered optical feedback �FOF� �23–26�,
mutually delay-coupled lasers �27,28�, and both polarization
resolved �29� and spatially extended �30� vertical-cavity
surface-emitting lasers �VCSELs� subject to optical feed-
back; see also the survey �31�. Surprisingly, a full numerical
bifurcation analysis of the COF laser �the system underlying
the more complicated setups mentioned above� has escaped
attention. Aside from the original analysis of Ref. �19�, in
which a partial two-parameter analysis in the planes of feed-
back phase versus both feedback strength and the linewidth
enhancement factor were performed, continuation studies
have been restricted to a single parameter �32–35�. Analyti-
cal two-parameter bifurcation analyses have proved to be
more plentiful; see, for example, Refs. �36–40�. However,
due to the infinite-dimensional nature of the governing DDE,
a full stability analysis proved to be beyond the means of
these analytical techniques.

It is the purpose of this paper to extend the results pre-
sented in the analytical studies �36–40�, completing the nu-
merical work of Ref. �19�, where we will identify regions of
stability of the so-called external-cavity modes �ECMs�, the
CW states, and the bifurcations bounding these regions in
parameters. This paper constitutes a start toward a complete
numerical survey of the stability and bifurcations of the COF
laser, in parameters, akin to that which has been achieved for
the injection laser �3�. Our study is organized as follows: in
Sec. II the rate equations describing the COF laser are intro-
duced; an analytical summary into the steady-state ECMs
and the bifurcations they undergo is given in Sec. III; Sec. IV
contains the results of our numerical bifurcation analysis
where, in particular, we detail the interaction between the
off-state of the COF laser and the ECMs as parameters are
varied; and finally, in Sec. V we draw conclusions and dis-
cuss future work.

II. LANG-KOBAYASHI RATE EQUATIONS

In dimensionless form, the Lang-Kobayashi equations
�14� describing the COF laser can be written as

dE

dt
= �1 + i��EN + �e−iCpE�t − �� , �1�

T
dN

dt
= P − N − �1 + 2N��E�2, �2�

for the slowly varying complex electric field E and the in-
version �number of electron-hole pairs� N. Parameters de-

scribe the linewidth enhancement factor �, the feedback
strength �, the 2�-periodic feedback phase Cp, the ratio be-
tween carrier and photon lifetimes T, and the pump current
P. These equations are written in the frame of reference of
the solitary laser threshold; that is, P=0 corresponds to the
threshold pump current of the laser without feedback.
Throughout this paper, we fix

� = 500 and T = 1000. �3�

These values were chosen so that our results can be com-
pared to previous results obtained by numerical bifurcation
analysis for the optical injection laser, PCF and FOF lasers,
and mutually coupled lasers with delay. In particular, time is
rescaled with respect to the photon lifetime �p=1 ps, so that
a delay time of �=500 corresponds to an external cavity on
the order of several centimeters.

III. ANALYTICAL SUMMARY

Before performing our numerical analysis, we briefly
summarize some analytical results of Eqs. �1� and �2�, where
we follow the original line of thought of Ref. �41�, together
with insight that comes from the geometric bifurcation
analysis techniques used in Refs. �42,40�.

The trivial solution of Eqs. �1� and �2� is given as

�E,N� = �0,P� . �4�

We will refer to this zero-intensity solution as the off-state of
the COF laser. As the level of feedback � is increased from
zero, additional solutions are known to emerge �14�. These
solutions are called ECMs and are of the form

�E,N� = �Rse
i�st,Ns� . �5�

In other words, they are solutions with a constant amplitude
Rs, frequency �s, at a fixed level of inversion Ns; they are
continuous-wave or CW states of the COF laser. Mathemati-
cally, the ECMs reflect the underlying S1 symmetry of Eqs.
�1� and �2� �43�; that is, they are invariant under the trans-
formation

E → cE where �c � C:�c� = 1� . �6�

It is well established �41� that substitution of Eq. �5� into
Eqs. �1� and �2� yields the following sets of equations:

0 = NsRs + �Rs cos�Cp + �s� + 2n�� , �7�

�s = �Ns − � sin�Cp + �s� + 2n�� , �8�

0 = P − Ns − �1 + 2Ns�Rs
2, �9�

where, throughout this paper, n�Z. These equations can be
solved to give

�s = −
K

�
sin��s� + Cp + arctan � + 2n�� , �10�

Ns = − � cos�Cp + �s� + 2n�� , �11�
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Rs
2 =

P − Ns

1 + 2Ns
, �12�

where the parameter

K = ��	1 + �2 �13�

describes the effective feedback strength �41�. We note al-
ready that K�1 is known as the low feedback regime and
K�1 the high feedback regime. For K�1 only one ECM
may exist, for K�1 more ECMs may exist �41�.

Equation �10� is transcendental; that is, we cannot find �s
explicitly. However, we can compute the values of �s nu-
merically, which together with Eqs. �11� and �12� fully de-
scribe the ECMs. More specifically, one is interested in the
roots of the nonlinear function

f��s� = �s +
K

�
sin��s� + Cp + arctan � + 2n�� . �14�

In the ��s , f��s�� plane, this describes a sinusoidally varying
function along the diagonal f��s�=�s. It is clear that the
amplitude of this function is given by K /�=�	1+�2, with
frequency 1 /�; that is, as �, � or � are increased the number
of solutions of Eq. �14� increases. Moreover, the feedback
phase Cp shifts the sine curve along the diagonal. As it does
so, ECMs are born in pairs when turning points of the curve
pass through f��s�=0 �42,40�. Such a transition is indicative
of a saddle-node bifurcation of ECMs �or double limit cycle
bifurcation�. They occur when

df��s�
d�s

= 0 and f��s� = 0, �15�

that is, saddle-node bifurcations �S+ and S−� of ECMs occur
for

Cp = � 
arccos�−
1

K
� + K sinarccos�−

1

K
��� − arctan �

+ 2n� . �16�

Clearly, they are independent of the pump current P. Note
that this formula was first derived in Ref. �41� and is equiva-
lent to that given in Ref. �40�. Furthermore, one can find the
limiting parameter values for which these saddle-node bifur-
cations exist. Such points are identified as cusp singularities,
they occur when

d2f��s�
d�s

2 = 0 and f��s� = 0, �17�

that is, for

�Cp,�� = �� − arctan � + 2n�,
1

�	1 + �2� . �18�

Note that this marks the transitional points between the low
�one ECM� and high �many ECMs� feedback regimes; that
is, the points at which K=1 �41,40�.

Finally, we note one further bifurcation curve. By com-
bining Eqs. �7� and �8�, evaluated at Ns= P, one obtains

P2 + ��P − �s�2 = �2. �19�

Again using Eq. �8�, this can be written as

Cp = � arccos�−
P

�
� + �	�2 − P2� − ��P + 2n� .

�20�

Equation �20� was derived from the assumption of an ECM
with Ns= P which implies Rs=0. In other words, along the
curve given by Eq. �20� an ECM with zero intensity exists.
�Apart from having a frequency component �s, this ECM is
identical to off-state �4�.� In Ref. �40�, Eq. �20� is derived
from a linear stability analysis of the off-state, where it was
shown to be a curve of Hopf bifurcations which destabilize
the off-state and lead to the birth of a single ECM.

The existence of ECMs �Eq. �14��, the saddle-node bifur-
cation �Eq. �16��, and the Hopf bifurcation of the off-state
�Eq. �20�� complete our brief summary into the analytical
bifurcation results which can be obtained by studying the
geometry of the ECM solution curves. However, we are
more interested in the interaction of these curves; the subtle
changes in the bifurcation structure around threshold. More-
over, we want to analyze the destabilization of the ECMs in
parameters. Asymptotic methods can be used to approximate
the destabilizing Hopf bifurcations of ECMs �39�. Moreover,
analytic expressions for the Hopf bifurcations of the full sys-
tem �Eqs. �1� and �2�� �which are equivalent to torus bifur-
cations of the off-state �20�� can be obtained �40�. The prob-
lem is that, due to the infinite-dimensional nature of DDEs,
they are always in the form of transcendental equations
which need to be solved numerically. To this end, a numeri-
cal continuation tool such as AUTO could be used to solve
these transcendental equations in parameters. However, it
makes more sense to utilize the numerical continuation tool
DDE-BIFTOOL �18� which allows one to find and follow solu-
tions and bifurcations of the full DDE system, Eqs. �1� and
�2�, in parameters. As mentioned earlier, DDE-BIFTOOL has
been used to great effect in studying semiconductor lasers
subject to various forms of optical feedback
�19,21–26,29,30�.

IV. NUMERICAL BIFURCATION ANALYSIS

In order to perform a numerical bifurcation analysis of the
ECMs of Eqs. �1� and �2� one must first resolve the under-
lying S1 symmetry �6� �19,43�. This can be achieved by mov-
ing to a rotating frame of reference:

E → Eeibt, b � R . �21�

The governing rate equations then become

dE

dt
= �1 + i��EN + �e−i�Cp+b��E�t − �� − ibE , �22�

T
dN

dt
= P − N − �1 + 2N��E�2, �23�

where b�R is an additional unknown parameter. During nu-
merical continuation, this is balanced through the inclusion
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of the extra condition Im�E�=0, thus a single solution is
isolated. In this way, ECMs of the form �5� are now de-
scribed as steady states of Eqs. �22� and �23�, where the free
parameter b=−�s at equilibrium �19�.

A. Stability and bifurcations in the plane of feedback
phase Cp versus pump current P

We begin our numerical analysis by considering the bifur-
cations of the off-state �4� and of the ECMs in the plane of
feedback phase Cp versus pump current P, identifying
changes in the bifurcation structure as the feedback strength
� is varied. All parameters are easily accessible in experi-
ments �44,45�. Figure 1 shows a curve of Hopf bifurcations
of the off-state h �black�, curves of saddle-node bifurcations
S� of the steady state ECMs �blue�, and curves of Hopf
bifurcations H of the ECMs �red� �17�. Interactions of these
codimension-one bifurcations are marked by large dots ���;
they include degenerate Hopf points dh�, a codimension-two
Hopf-Hopf point hh, and a codimension-three degenerate
Hopf-Hopf point dhh. The bifurcation curves are drawn dark
when supercritical, that is, the solution born in the bifurca-
tion is stable, and light when subcritical, that is, the solution
born in the bifurcation is unstable. Striped regions indicate
areas in which the off-state �4� is stable, light green shading
indicates regions in which a single ECM is stable, and dark
green regions indicate bistability between ECMs. Note the
2� periodicity of the parameter Cp; that is, curves leaving
the right boundary of each panel of Fig. 1 are continued at
the left boundary. From Figs. 1�a�–1�c�, the feedback
strength � is fixed at �=0.001, 0.002, and 0.004, respec-
tively.

Figure 1 clearly shows that as P is increased the stable
off-state �striped region� is destabilized at the supercritical
Hopf curve h �black�, at which point a stable ECM is born
�light green region�. The curve h is given by Eq. �20� and is
clearly seen to oscillate between P=−� and P=�; compare
with Eq. �19�. Consequently, the lowest point for which a
stable ECM exists can be derived from Eq. �20� as �Cp , P�
= ����+2n� ,−��. In other words, stable ECMs may exist
below the solitary laser threshold P=0, the lower limit in-
creasing with the feedback strength �; this is known as
threshold reduction �46�. Alternatively, for fixed values of P
and as Cp is varied, it is seen that ECMs can also be born in
supercritical saddle-node bifurcations S� �blue�. In this case,
two ECMs are born as a stable and unstable pair, often re-
ferred to as modes and antimodes �47�. Thus, one can find
regions of bistability �dark green shading� between a stable
ECM born at the curve h and a stable ECM born in a saddle-
node bifurcation S�. We note that while Eq. �14� is indepen-
dent of P and, hence it follows, so is the saddle-node Eq.
�16�, solutions of form �5� can be complex; that is, they are
not physically relevant �40�. For example, one finds no
physically relevant ECMs in the purely striped region of Fig.
1, rather an ECM with a complex valued amplitude exists; as
P is increased physically relevant ECMs are created only as
the curve h is crossed. Hence, the saddle-node curves which
give rise to physically relevant ECMs begin at the curves h at
the points dh�. At this point, the criticality of the curve h

changes; this is characteristic of a degenerate Hopf point
�also known as a generalized Hopf or Bautin bifurcation�
�16,17�. Finally, it is seen in all cases that as P is increased,
ECMs are destabilized in supercritical Hopf bifurcations H
�red�, leading to stable periodic oscillations of the output
power �E�t��2 which upon variation in parameters may bifur-
cate into more complex, possibly chaotic, dynamics. These
periodic solutions and their bifurcations can be analyzed us-
ing the continuation package PDDE-CONT �48�, however, this
is beyond the scope of this paper.

Having described the general features of Fig. 1, we now
discuss the finer details of each panel. To help with our un-
derstanding, Fig. 2 shows one-parameter bifurcation dia-
grams cut through each panel of Fig. 1 at fixed values of P.
These one-parameter bifurcation diagrams are also known as
ECM components; we show them as a function of Cp against
the constant level of inversion of the ECMs Ns �again, note
the 2� periodicity of Cp�. In Fig. 2, saddle-node bifurcations
of ECMs are denoted by crosses �	�, Hopf bifurcations of
ECMs by stars ���, and Hopf bifurcations of the off-state by
large dots ���. Stable ECMs are drawn in green, unstable in
red; the off-state �4� is drawn black when stable, gray when
unstable. Note that the lower bound of each ECM component
is given by Ns=−� and the upper bound by the smaller of
Ns=� or Ns= P; compare with Eqs. �7� and �9�. Furthermore,
Fig. 3 shows the frequencies 
h and 
S of the ECMs born at
the Hopf curve h �black� and the saddle-node curves S�

�blue�, respectively, together with the frequency 
H of the
periodic modulation of the output power �E�t��2 arising at the
Hopf curves H �red�, as a function of the pump current P.
From Figs. 3�a�–3�c�, �=0.001, 0.002, and 0.004, corre-
sponding to the values of Figs. 1�a�–1�c�. Note that these
frequencies are independent of Cp.

Figure 2�a1� shows the ECM component for �� , P�
= �0.001,−0.000 75�. This is a transition just below the lower
degenerate Hopf point dh+ of Fig. 1�a�. It is clear that a
stable ECM is born from a supercritical Hopf bifurcation h
of the stable off-state as Cp is both increased and decreased.
Increasing P, one passes the point dh+ in Fig. 1�a�. Figure 2
�a2� for �� , P�= �0.001,0.000 25� shows the emergent
saddle-node bifurcation on the rightmost turning point of the
ECM component. The stable and unstable ECMs emanating
from this point are both destroyed in Hopf bifurcations h as
Cp is decreased. As the saddle-node bifurcation lies to the
right of the Hopf bifurcation of the off-state, one finds a
bistability between this off-state and an ECM. This is indi-
cated in Fig. 1�a� by the light green, striped region between
the curve S+ and the curve h. Increasing P further, one passes
the upper limit of the curve h. Consequently, the ECM com-
ponent of Fig. 2 �a3� for �� , P�= �0.001,0.0015� does not
terminate in a Hopf bifurcation of the off-state; the ECM
component is now a smooth curve over all values of Cp. The
second saddle-node bifurcation S− is seen on the leftmost
turning point of this ECM component. Moreover, for P
=0.0015, the supercritical Hopf curve of ECMs H shown in
Fig. 1�a� is crossed twice as Cp is decreased from Cp=�.
Figure 2�a3� shows unstable ECMs �red� between these two
Hopf bifurcations of ECMs. This leads to regions with no
stable off-state or ECMs, the white regions of Fig. 1�a�. Fig-
ure 3 also reveals the emergence of the Hopf curve H �red�.
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At this low value of �=0.001, the frequency 
H of the bi-
furcating periodic modulation is approximately that of the
undamped relaxation oscillations �ROs�; namely, 
H�
RO
=	2P /T=0.002 �P=0.002.

The bifurcation scenario becomes more complicated as �
is increased. Locally, the key transition occurs at �=1 /�
=0.002; this is shown in Fig. 1�b�. The curve h is seen to
form a geometric cusp. The curve S− and the curve H iden-
tified in Fig. 1�a� are shown to emanate from this cusp point.
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In fact, the curve H now consists of two separate parts, a
supercritical part �dark red�, leading to loss of stability of an
ECM and the birth of a stable periodic solution, and a sub-
critical part �light red�, leading to no changes in ECM stabil-
ity and the birth of an unstable periodic solution. This is
typical of a Hopf-Hopf point hh �16,17�. Moreover, the curve
S− is obviously that which was shown to emerge from the
degenerate Hopf point dh− in Fig. 1�a�. Therefore, we will
refer to this codimension-three point, at the cusp of the curve
h and from which the curves S− and H emanate, as the de-
generate Hopf-Hopf point dhh. It occurs at �Cp ,� , P�= ��
−�+2n� ,1 /� ,1 /��= �0.1416+2n� ,0.002,0.002�. Again,
we aid our description of Fig. 1�b� with ECM components.
These are shown in Figs. 2�b1� to 2�b3� for P=−0.001,
0.002, and 0.0025, respectively. Once more, for low values
of P, but above the point dh+ one finds bistability between
the off-state and an ECM; see Fig. 2�b1� and the green,
striped region of Fig. 1�b�. At the degenerate value of
�� , P�= �0.002,0.002�, Fig. 2�b2� shows that the ECM com-
ponent forms a cusp, the tip of which is the codimension-
three point dhh. Past this value of P, the subcritical saddle-
node bifurcation S− exists and the off-state is always
unstable; see Fig. 2�b3� and compare with Fig. 1�b�. Again,
the frequencies 
 of the respective bifurcating solutions are
shown in Fig. 3�b�. The curve S− is clearly seen to emanate
from the rightmost turning point of the curve h, the point of
Hopf degeneracy. At this point, the lower and upper parts of
the curve h come together, at the same frequency: the point
dhh. Moreover, the frequencies 
H, of the bifurcating modu-
lation, along the curve H are seen to go to zero for P
=0.002. This can be interpreted as a Bogdanov-Takens bifur-
cation BT of the ECMs �or, indeed, a 1:1 resonance of the
off-state, at which point the ECM bifurcating from the curve
h has leading multipliers �1,2=1�. Physically, the low fre-
quency solutions emanating from the curve H, near the point
dhh, are a source of excitability �49�: one finds nearby
infinite-period homoclinic solutions �17�.

Finally, for values of ��1 /�=0.002, Fig. 1�c� shows that
after the cusp, the curve h has a self-intersection. Again,
supercritical and subcritical curves H are still seen to ema-
nate from this codimension-two Hopf-Hopf bifurcation point
hh �16,17�; compare with Ref. �20�. Note that such a bifur-
cation has also been identified in the inversionless laser �50�.
Figure 3�c� reveals that the frequencies 
h of the ECMs
emanating from the supercritical and subcritical parts of the
curve h are now different at the point hh. Moreover, the
frequency 
H of the bifurcating periodic modulation at the
curve H is seen to be well above 
RO�0.0032 �P=0.005. In
fact, 
H is seen to be approximately the difference between
the two frequencies 
h; we will return to this later at the end
of Sec. IV B. The associated ECM components at �=0.004
are shown in Figs. 2�c1� to 2�c3� for P=−0.002, 0.002, and
0.0045, respectively. For these higher values of �, the ECM
component may terminate in subcritical Hopf bifurcations of
the off-state at both ends; see Fig. 2 �c2� for P=0.002. Figure
2 �c3� also reveals that, as Cp is varied, the ECM component
may pass through more than one 2� interval before termi-
nating. This is to be expected, as we have already noted that
increasing �, or indeed P, leads to an increase in the number
of coexisting, physically relevant ECMs.

We end our discussion on the stability and bifurcations of
the ECMs in the �Cp , P�-parameter plane by briefly investi-
gating what happens at higher values of the pump current P
�although this is away from threshold, the bifurcation struc-
ture remains simple and, hence, it is worth the brief excur-
sion�. Figures 4�a�–4�c� again show regions of ECM stability
and their bifurcations for �=0.001, 0.002, and 0.004, respec-
tively, but extended into higher values of P. In general, as P
is increased curves of Hopf bifurcations of ECMs �red� are
seen to appear. For �=0.001, Fig. 4�a�, these Hopf curves are
shown to be closed. The lowest curve is a continuation of the
curve H identified in Fig. 1�a�. As � is increased, these
closed Hopf curves may overlap; see Fig. 4�b� for �=0.002.
Intersections between the top and bottom of two neighboring
Hopf curves occur at codimension-two Hopf-Hopf bifurca-
tion points HH �marked as large dots in Fig. 4�. From such
points curves of torus bifurcations of ECMs emanate �these
are equivalent to bifurcations of the off-state to T3 tori �47��,
giving rise to quasiperiodic modulations in the output power
�E�t��2, which in turn may bifurcate to more complicated,
chaotic dynamics �7�. Furthermore, the Hopf curves form
tangencies with the saddle-node curve S− at codimension-
two saddle-node Hopf bifurcation points SH− �indicated by
the large dots which lie on the vertical saddle-node curve S−�.
Again, curves of torus bifurcations are known to emanate
from such points �16,17�. The situation gets more compli-
cated as � is increased; see Fig. 4�c� for �=0.004. The num-
ber of Hopf curves at higher values of P increases. More-
over, one observes regions of tristability between ECMs
marked by the darkest green region in Fig. 4�c�.

B. Stability and bifurcations in the plane of feedback
phase Cp versus feedback strength �

We now investigate the stability and bifurcations of the
ECMs in the plane of feedback phase Cp versus feedback
strength �, for different values of the pump current P. This
projection was used in Ref. �19� and the analytical studies of
Refs. �38,40�. Figures 5�a�–5�f� show two-parameter bifurca-
tion diagrams for P=−0.001, 0.0, 0.0005, 0.001, 0.002, and
0.005, respectively. Bifurcations and regions of stability of
the off-state and the ECMs are color coded as in Figs. 1 and
4. Figure 5�a� for P=−0.001 shows that for values of pump
current below threshold, the off-state is stable at the onset of
feedback. For most values of Cp, as � is increased the off-
state is destabilized at the supercritical curve h �black�, at
which point a single stable ECM is born �recall threshold
reduction �46��. The exception to this is found for Cp� �
−3.497+2n� ,−1.135+2n��. In this range of Cp, Fig. 5�a�
shows that a stable ECM is born �together with an unstable
ECM� at the curve S+ �blue�. �This curve S+ begins at the
degenerate Hopf point dh+.� Thus, like for Fig. 1, one ob-
serves a region of bistability between the off-state and an
ECM �light green, striped region�. This region of bistability
is bounded above by the curve h in which the off-state is
destabilized. Furthermore, for Cp� �−1.642+2n� ,1.772
+2n�� the ECM born at the curve h coexists with the stable
ECM born in the saddle-node bifurcation S+; one finds a
region of bistable ECMs �shaded dark green�. As for Fig. 1,
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the criticality of the curve h changes when it intersects itself.
Again, from this codimension-two Hopf-Hopf point hh, two
curves H are seen to emanate. As � is increased, ECMs are
destabilized at the supercritical one of these �dark red�. This
can lead to regions containing no stable off-state or ECMs

�white�. Finally, at higher values of �, stable ECMs are born
in the continuation of the curve S+. This generic scenario of
ECMs born in supercritical saddle-node bifurcations and be-
ing destabilized in supercritical Hopf bifurcations occurs for
all values of pump current P; see already Figs. 5�b�–5�f�. The
crucial changes between each panel of Fig. 5 involve the
interaction of the curves S� and h, around the degenerate
Hopf points dh�.

Figure 5�b� shows the case for P=0; that is, at the thresh-
old value of the solitary laser. This is clearly a degenerate
situation. The curves h are symmetric about Cp=0 and form
straight lines from �=0, extending into higher values. From
Eq. �20�, these curves h are given as Cp= � �� /2+���
+2n�. The points hh are found at Cp=n�. Again, one ob-
serves a region of bistability between the off-state and an
ECM �light green, striped region�, and a region of bistability
between two ECMs �shaded dark green�.

For values of pump current above threshold, Fig. 5�c� for
P=0.0005 shows that a stable ECM is born at the onset of
feedback �=0 for all values of Cp. This is a consequence of
the curve h folding over on itself to form a small loop; the
bifurcation from a stable off-state to a stable ECM occurs as
one moves from the inside of this loop to the outside. The
off-state is only stable inside this small loop. Furthermore,
the curve S− which begins at the point dh− is seen to pass
through this loop. �Note that the point dh+ has now changed
to dh− as a cusp in the saddle-node curve has formed.� Thus,
one still finds a small region of bistability between the stable
off-state and an ECM. As the pump current P is increased,
the h loop can be seen to tighten. This results in the destruc-
tion of the region in which one finds a stable off-state only;
see Fig. 5�d� for P=0.001. The loop in the curve h tightens
to a point for P=1 /�=0.002; see Fig. 5�e�. The resulting
cusp is that identified in Fig. 1�b� and occurs at the
codimension-three point dhh. The curve h which emanates
from this point dhh is now subcritical along its entire length;
for P�1 /�=0.002 a stable off-state can no longer exist.
Moreover, the supercritical curves H are seen to contort to
lower values of �. This results in the loss of the large regions
of ECM bistability �dark green�. Finally, Fig. 1�f� for P
=0.005 shows that as the pump current P is increased, the
point dh− has moved along a diagonal toward lower values
of Cp �modulus 2��. In doing so, it drags a subcritical part of
the saddle-node curve S− �light blue� with it. The change in
criticality of this curve S− happens at a codimension-two
saddle-node Hopf bifurcation point SH−, a remnant of the
unfolding of the codimension-three point dhh. This is the
scenario one finds for higher values of P, and that identified
in Ref. �19�. Specifically, one finds diagonal bands of ECM
stability bounded below by curves of supercritical saddle-
node bifurcations and above by curves of supercritical Hopf
bifurcations, the latter emanating from a codimension-two
point SH−.

We now return to considering the frequencies of the bi-
furcating solutions, this time as a function of �. Figures
6�a�–6�c� show these frequencies, color coded as in Fig. 3,
for P=0.001, 0.002, and 0.005; that is, corresponding to the
bifurcation diagrams of Figs. 5�d�–5�f�, respectively. It is
clear that for higher values of � the frequency 
H of the
curves H asymptote to similar values. In fact, for ��1 /�
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FIG. 4. �Color online� Extension of Fig. 1 into higher values of

the pump current P�=P̂	10−3�. Shaded as for Fig. 1 with the ad-
dition of a darker region in panel �c� indicating regions of tristable
ECMs. The large dots ��� mark the intersection of two Hopf curves
�red solid curves� at codimension-two Hopf-Hopf points hh, and the
intersection of Hopf and saddle-node curves S− �blue dashed
curves� at saddle-node Hopf points SH−.
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=0.002 the supercritical part of this curve is known to follow
an asymptotic approximation identified by Tager and Peter-
mann �TP� along which one finds two ECMs at identical
levels of inversion, yet with differing frequencies �39,51,52�.
The oscillation born along this supercritical part of the Hopf
curve �for ��1 /�=0.002� has been shown to exhibit a fre-
quency given by the difference of the two ECM frequencies

�32,51�; this was identified in Fig. 3�c�. Figure 6 also agrees
with the observation of Ref. �52� that the frequency of the
oscillations have an upper bound of 
=2� /��0.012. For
��1 /�=0.002, Figs. 6�b� and 6�c� show a slight kink in the
upper part of the supercritical Hopf curve, where it starts to
follow a second asymptotic approximation �52�. For very
short external cavities, the oscillations emanating from the
Hopf curve following this second asymptote have been
termed dispersive self Q-switching �DQS� pulsations �53�.
As noted above, they are characterized by frequencies on
the time-scale of undamped relaxation oscillations 
RO
=	2P /T; that is, around 
=0.002 in Fig. 6�b� and around

=0.0032 in Fig. 6�c�. The PT and DQS asymptotes are
known to converge at a single point of mode degeneracy
�MD� at which the two ECM frequencies responsible for
these pulsations are equal. Close to this MD point one finds
the saddle-node Hopf points identified in Figs. 5�f� and 6�c�
�52,53�. Further to this, as for Fig. 3�b�, Fig. 6�b� reveals that
for the degenerate case of P=1 /�=0.002, the frequency of
the Hopf curves decreases below 
RO to a value of 
=0 at
�=1 /�=0.002, the codimension-three point dhh. As noted,
the oscillations emanating from the Hopf curves close to the
point dhh �identified in Fig. 5�e�� have extremely low fre-
quencies �or large periods� indicating the presence of nearby
homoclinic dynamics �17,49,53�.
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C. Changes in the linewidth enhancement factor �

We end our study by considering what effect a decrease in
the linewidth enhancement factor � has on the bifurcation
structure. Figure 7 shows bifurcation diagrams for �=1.0,
0.5 and 0.0 �rows �a� to �c�, respectively�, and for P=
−0.001, 0.0, 0.001, 0.002, and 0.005 �columns 1–5, respec-
tively�, in the plane of feedback phase Cp versus feedback
strength �. Physically, Eqs. �1� and �2� at these low values of
� are used to model microchip lasers �54�. Figure 7 �rows �a�
and �b�� show that, for �=1 and 0.5, the bifurcation structure
is qualitatively the same as for �=3 �Fig. 5�. Moreover, as �
is decreased �Figs. 7�a�–7�c��, the h curves simply shift with
respect to Cp: for P�0, this curve moves to lower values of
Cp; for P=0, the curve does not move; and for P�0, it
moves to higher values of Cp �this can be inferred from Eq.
�20��. The main difference with Fig. 5 is the emergence of an
SH+ point on the upper H curve. This point moves down the
H curve as � is decreased. In doing so, the H curve changes
to supercritical and the S+ curve turns subcritical. Eventually,
the SH+ point reaches the point hh and disappears, the two H
curves emanating from the point hh are then both seen to be
supercritical. A second change, as � is decreased, is that the
curves H move toward the vertical: the regions of ECM in-
stability become smaller and, above threshold, our whole
region of interest is dominated by a single stable ECM. The
feedback sensitivity is very much reduced for lower values
of � �55�. This is leading toward the degenerate situation of
zero linewidth enhancement factor.

Figure 7 �row �c��, for �=0, shows that the bifurcation
structure is symmetric about Cp=2n�; compare Eq. �8� with
�Cp ,�s�→ �−Cp ,−�s�. The only stable ECM is born at the
supercritical curve h �below threshold� or at the onset of
feedback �=0. Moreover, this ECM is shown to be unstable
only in thin regions bounded by the H curves around Cp
= �2n+1��. This instability is due to the negative interfer-
ence between the outgoing and the reflected electric field. No
ECMs are born in saddle-node bifurcations: all of the curves
S� are subcritical. In fact, one only finds curves S� in Fig. 7
�c5� for P=0.005. As P is decreased, the curve h moves
closer to the curves S� until, for P=1 /�=0.002 �Fig. 7 �c4��,
the curves lie on top of one another: the degenerate Hopf
interaction takes place along the entire curve. For �=0, in
fact, this degeneracy only exists at P=1 /�; compare Ref.
�40� �the equation for “��”�. For P�0.002, the curves S� no
longer exist.

Finally, Fig. 8 shows bifurcation diagrams in the �Cp ,��
plane. This is for completeness and should be compared to
the early study of Ref. �36�. From rows �a� to �c�, �=0.001,
0.002, and 0.003. As for Fig. 7, from column 1 to column 5,
P=−0.001, 0.0, 0.001, 0.002, and 0.005, respectively. The
symmetry between positive and negative values of � is im-
mediately clear; that is under the transformation �Cp ,��→
−�Cp ,��. Furthermore, for fixed � and P, the curves h are
seen to be linear with slope −1 / �P��; recall Eq. �20�. For
values of � �P� where P�0, Fig. 8�a1� shows that the off-
state is the only stable solution for all values of Cp and �;

−1 0 1
0

3

6

−1 0 1
0

3

6

−1 0 1
0

3

6

−1 0 1
0

3

6

−1 0 1
0

3

6

−1 0 1
0

3

6

−1 0 1
0

3

6

−1 0 1
0

3

6

−1 0 1
0

3

6

−1 0 1
0

3

6

−1 0 1
0

3

6

−1 0 1
0

3

6

−1 0 1
0

3

6

−1 0 1
0

3

6

−1 0 1
0

3

6

(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

κ̂ κ̂ κ̂ κ̂ κ̂

κ̂ κ̂ κ̂ κ̂ κ̂

κ̂ κ̂ κ̂ κ̂ κ̂

Cp/π Cp/π Cp/π Cp/π Cp/π

Cp/π Cp/π Cp/π Cp/π Cp/π

Cp/π Cp/π Cp/π Cp/π Cp/π

HH
h

hh

HSH SH SH SH

H H

+++++

H S
+ H S

+

hh

S
+

H

+

S
+

H H

S
+

SH

S
+

H H

dh

H H

h

hh

H HHH

h
hh

hh

H H

−S

S −

S −
hh

SH
−

h

h

h

hh

h

h

h

hh
+dh

h

h

SH

hh

hh
hh

h

h
h

h

hh

h

h

hh
hh

h h

hh

+ −dh

h h

−

dhh

dh

dhh

dh−

FIG. 7. �Color online� Extension of Fig. 5 into lower values of the linewidth enhancement factor �. From row �a� to row �c�, �=1, 0.5
and 0, respectively; from column 1 to column 5, P=−0.001, 0.0, 0.001, 0.002 and 0.005, respectively �see the caption of Fig. 1 for shading
detail�.

STABILITY NEAR THRESHOLD IN A SEMICONDUCTOR… PHYSICAL REVIEW E 79, 036210 �2009�

036210-9



compare with Figs. 5�a� and 7 �column 1�. The curves h in
Fig. 8�a1� are double covered. Figure 8�b1� shows that as �
is increased, they move apart to reveal a region of single
ECM stability. Moreover, curves S� enter our region of in-
terest �compare with Fig. 5�a�� resulting in regions of bista-
bility between the off-state and the ECM, or indeed between
the ECM and a second stable ECM born at these curves S�.
Increasing � results in further multistability where one ob-
serves regions of tristability between the off-state and the
two ECMs; see Fig. 8�c1�. The situation is more complex for
higher values of P. At threshold, P=0, Fig. 8�b1� again re-
veals regions of bistability. As � is increased �Fig. 8�b2��, yet
more curves S� enter our region of interest, resulting in ad-
ditional stable ECMs and, subsequently, in regions of trista-
bility between three stable ECMs for large values of �; see
Fig. 8�c2�. Moreover, the supercritical curves h move in-
creasingly closer together leading to smaller regions of sta-
bility of the off-state. One also observes the emergence of the
curves H in Fig. 8�c2�. For values of P above threshold,
these curves H are more prominent. Figure 8�a3� for �� , P�
= �0.001,0.001� shows that they lead to regions of no stable
off-state or ECMs. However, the double covered curves h
open as � is increased to reveal a small region of bistability
between the off-state and a stable ECM; see Fig. 8 �b3�: one
is moving upwards through the loop in the curve h shown in
Fig. 7 column 3. Also from Fig. 8�a3�–8�b3�, the degree of
multistability is again seen to increase through the emer-
gence of S� curves, however, it decreases in Fig. 8�c3� due

to the dominance of the destabilizing curves H. As P is in-
creased, Fig. 8 columns 4 and 5 show increasing sizes to the
regions in which one finds no stable off-state or ECMs. The
principal difference being that for higher values of � �rows
�b�-�c��, further S� and H curves enter our region of interest
so that the regions of no stability are interspersed by regions
in which one finds a single stable ECM. Figure 8 column 5
can be qualitatively compared to the bifurcation diagrams of
Ref. �36�. Finally, we draw attention to the degenerate case
�= P=1 /�=0.002, shown in Fig. 8�b4�, in which one finds a
curve of degenerate Hopf-Hopf bifurcations of the off-state
dhh.

V. CONCLUSIONS

We have performed a thorough numerical bifurcation
analysis of the steady states of a semiconductor laser subject
to conventional optical feedback �COF�, as modeled by the
Lang-Kobayashi equations. Specifically, we have investi-
gated what effect changes in the values of the experimentally
accessible parameters of pump current P, feedback strength
� and feedback phase Cp have on the stability of the laser’s
off-state and of the continuous-wave, external-cavity modes
�ECMs�. Moreover, we also investigated the effect of varying
the linewidth enhancement factor �. Such studies, assuming
a knowledge of � and P, can be used to determine the �
factor experimentally �13�. Furthermore, our study allows
comparison with similar bifurcation results obtained from the
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analysis of semiconductor lasers subject to filtered optical
feedback, mutually coupled lasers with delay and spatially
extended lasers subject to optical feedback; all modeled by
increasingly complicated extensions to the Lang-Kobayashi
equations. In this way, our study is a foundation against
which to compare these more complicated models and future
studies.

While it has been well documented that as the feedback
strength is increased, the ECMs of the COF laser are born in
saddle-node bifurcations and destabilized in Hopf bifurca-
tions, and to a lesser extent that these bifurcations are orga-
nized around codimension-two bifurcation points, we have
shown how these organizing centers interact under the varia-
tion of further parameters. As our study progressed, the bi-
furcation diagrams became increasingly more complicated.
However, it is hoped that by explaining the initial results in
detail, the latter results are clear. Multistability between the
off-state and the ECMs was found to increase for larger val-
ues of the linewidth enhancement factor. Moreover, the bi-
furcation structure was seen to be organized by codimension-

two degenerate Hopf and Hopf-Hopf bifurcation points of
the off-state. The codimension-three point at which these two
Hopf degeneracies came together was shown to be the limit
for which a stable off-state can exist.

Challenges still remain for this most fundamental of all
semiconductor feedback laser systems. As already men-
tioned, the periodic solutions of the ECMs �those which
emanate from the supercritical Hopf bifurcations�, and their
bifurcations, can be mapped out in parameters �48�, thus,
identifying regions of chaotic output and adding robustness
to chaotic communication schemes �10�. Furthermore, ho-
moclinic bifurcations of the periodic solutions are known to
guide the well-documented low frequency fluctuations �LFF�
�33,56�. A detailed examination of these homoclinic bifurca-
tions, in parameters, may locate the organizing center of the
LFF. Finally, it is hoped that a detailed study, akin to that of
Ref. �4�, in which the bifurcations of the COF laser are
mapped out experimentally may reproduce the numerical bi-
furcation curves presented here.
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